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Abstract

In this paper we compare two constructions of weight functions (off-shell Bethe vectors) for the quantum affine algebra
Uq (ĝlN ). The first construction comes from the algebraic nested Bethe ansatz. The second one is defined in terms of certain
projections of products of Drinfeld currents. We show that the two constructions give the same result in tensor products of vector
representations of Uq (ĝlN ).
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Off-shell Bethe vectors in integrable models associated with the Lie algebra glN have appeared in [8] in the
framework of the algebraic nested Bethe ansatz. For N = 2 they have the form B(t1) · · · B(tk)v, where B(u) = T12(u)
is an element of the monodromy matrix and v is the highest weight vector of an irreducible finite-dimensional
representation of Uq(ĝl2). For N > 2, off-shell Bethe vectors are defined in [8] inductively. They are functions
of several complex variables t1

1 . . . t
N−1
k labeled by two indices, the superscript corresponding to a simple root of slN .

If the variables t1
1 . . . t

N−1
k satisfy the Bethe ansatz equations, the Bethe vectors are eigenvectors of the transfer matrix

of the system.
Off-shell Bethe vectors also serve for integral representations of solutions to the q-difference Knizhnik–

Zamolodchikov (qKZ) equations [9–11]. In this case they are known under the name of “weight function”.
It has been observed in [10] that weight functions have very special comultiplication properties that allow
one to express a weight function in a tensor product of representations in terms of weight functions in the
tensor factors. The comultiplication properties of weight functions are essential for constructing solutions to the
qKZ equations. In this paper we start from these properties and define a weight function as a collection of
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rational functions with values in representations of the quantum affine algebra satisfying suitable comultiplication
relations.

A new approach for construction of weight functions has been proposed recently in [7,5]. It is based on the “new
realization” of quantum affine algebras [1]. In this approach, the key role is played by certain projections to the
intersection of Borel subalgebras of different types of the quantum affine algebra. Those projections were introduced
in [6] and were used in [4] to obtain integral formulae for the universal R-matrix of the quantum affine algebra
Uq(ŝl2). It is shown in [7,5] that acting with a projection of a product of Drinfeld currents on highest weight vectors
of irreducible finite-dimensional representations of Uq(ĝlN ) one obtains a collection of rational functions with the
required comultiplication properties, that is, a weight function.

In this paper we compare two constructions of weight functions for the quantum algebra Uq(ĝlN ). We conjecture
that the constructions give the same result for any irreducible finite-dimensional representation of Uq(ĝlN ). We prove
this conjecture for tensor products of the vector representations of Uq(ĝlN ). To this end, we show that weight functions
defined by the projections and those given by the algebraic Bethe ansatz satisfy the same recurrence relations with
respect to the rank N of the algebra. To obtain the recurrence relations we use a generalization of the Ding–Frenkel
isomorphisms of two realizations of Uq(ĝlN ).

The paper is organized as follows. In Section 2 we recall two descriptions of Uq(ĝlN ): in terms of the fundamental
L-operators and in terms of Drinfeld currents. We define weight functions and symmetric (or modified) weight
functions through their coalgebraic properties. We pay special attention to the symmetry properties of weight
functions. In Section 3 we describe the construction of a weight function by means of projections of Drinfeld
currents. This is done by applying the construction of [5] to the subalgebra Uq(ŝlN ) in Uq(ĝlN ). In Section 4 we
describe, following [10], the L-operator construction of the Uq(ĝlN ) weight function. In Section 5 we prove the main
result of the paper that the two constructions of weight functions give the same result for tensor products of the
vector representations of Uq(ĝlN ). Also, Section 5 contains a description of projections of composed currents, which
generalizes the Ding–Frenkel isomorphism.

2. Quantum affine algebra Uq(ĝlN)

2.1. L-operator description

Let ei j ∈ End(CN ) be a matrix with the only nonzero entry equal to 1 at the intersection of the i-th row and j-th
column. Let R(u, v) ∈ End(CN

⊗ CN )⊗ C[[v/u]],

R(u, v) =
qu − q−1v

u − v

∑
1≤i≤N

ei i ⊗ ei i +
∑

1≤i< j≤N

(ei i ⊗ e j j + e j j ⊗ ei i )

+
q − q−1

u − v

∑
1≤i< j≤N

(vei j ⊗ e j i + ue j i ⊗ ei j ), (2.1)

be the standard trigonometric R-matrix associated with the vector representation of glN . It satisfies the Yang–Baxter
equation

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2), (2.2)

and the inversion relation

R(12)(u1, u2)R(21)(u2, u1) =
(qu1 − q−1u2)(q−1u1 − qu2)

(u1 − u2)2
. (2.3)

The algebra Uq(ĝlN ) (with the zero central charge and the gradation operator dropped out) is a unital associative
algebra generated by the modes L±i j [±k], k ≥ 0, 1 ≤ i, j ≤ N , of the L-operators L±(z) =

∑
∞

k=0
∑N

i, j=1 ei j ⊗
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L±i j [±k]z∓k , subject to relations

R(u, v) · (L±(u)⊗ 1) · (1⊗ L±(v)) = (1⊗ L±(v)) · (L±(u)⊗ 1) · R(u, v)
R(u, v) · (L+(u)⊗ 1) · (1⊗ L−(v)) = (1⊗ L−(v)) · (L+(u)⊗ 1) · R(u, v),

L+i j [0] = L−j i [0] = 0, L+kk[0]L
−

kk[0] = 1, 1 ≤ i < j ≤ N , 1 ≤ k ≤ N .

(2.4)

The coalgebraic structure of the algebra Uq(ĝlN ) is defined by the rule

∆
(

L±i j (u)
)
=

N∑
k=1

L±k j (u)⊗ L±ik(u). (2.5)

2.2. The current realization of Uq(ĝlN )

The algebra Uq(ĝlN ) in the current realization (with the zero central charge and the gradation operator dropped
out) is generated by the modes of the Cartan currents

k±i (z) =
∑
m≥0

k±i [±m]z∓m, k+i [0]k
−

i [0] = 1,

i = 1, . . . , N , and by the modes of the generating functions

Ei (z) =
∑
n∈Z

Ei [n]z−n, Fi (z) =
∑
n∈Z

Fi [n]z−n , (2.6)

i = 1, . . . , N − 1, subject to the relations

(q−1z − qw)Ei (z)Ei (w) = Ei (w)Ei (z)(q z − q−1w),

(z − w)Ei (z)Ei+1(w) = Ei+1(w)Ei (z)(q−1z − qw),

(q z − q−1w)Fi (z)Fi (w) = Fi (w)Fi (z)(q−1z − qw),

(q−1z − qw)Fi (z)Fi+1(w) = Fi+1(w)Fi (z)(z − w),

k±i (z)Fi (w)
(
k±i (z)

)−1
=

q−1z − qw
z − w

Fi (w),

k±i+1(z)Fi (w)
(
k±i+1(z)

)−1
=

q z − q−1w

z − w
Fi (w),

k±i (z)F j (w)
(
k±i (z)

)−1
= F j (w) if i 6= j, j + 1,

k±i (z)Ei (w)
(
k±i (z)

)−1
=

z − w
q−1z − qw

Ei (w),

k±i+1(z)Ei (w)
(
k±i+1(z)

)−1
=

z − w
q z − q−1w

Ei (w),

k±i (z)E j (w)
(
k±i (z)

)−1
= E j (w) if i 6= j, j + 1,

[Ei (z), F j (w)] = δi, jδ(z/w)(q − q−1)
(
k+i (z)/k+i+1(z)− k−i (w)/k−i+1(w)

)
,

(2.7)

together with the Serre relations

Symz1,z2
(Ei (z1)Ei (z2)Ei±1(w)− (q + q−1)Ei (z1)Ei±1(w)Ei (z2)+ Ei±1(w)Ei (z1)Ei (z2)) = 0,

Symz1,z2
(Fi (z1)Fi (z2)Fi±1(w)− (q + q−1)Fi (z1)Fi±1(w)Fi (z2)+ Fi±1(w)Fi (z1)Fi (z2)) = 0.

(2.8)

To construct an isomorphism between the L-operator and current realizations of the algebra Uq(ĝlN ), one has to
decompose the L-operators into the Gauss coordinates
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L±(z) =

(
N∑

i=1

ei i +

N∑
i< j

F±i, j (z)ei j

)
·

(
N∑

i=1

k±i (z)ei i

)
·

(
N∑

i=1

ei i +

N∑
i< j

E±j,i (z)e j i

)
(2.9)

and for i = 1, . . . , N −1 to identify the total currents and the linear combinations of the nearest to the diagonal Gauss
coordinates [2]

Ei (z) = E+i+1,i (z)− E−i+1,i (z), Fi (z) = F+i,i+1(z)− F−i,i+1(z). (2.10)

The diagonal Gauss coordinates of the L-operators coincide with the Cartan currents k±i (z) and are denoted by
the same letter. The results of [2] say nothing about relations between Gauss coordinates F±i, j (z) and E±j,i (z) of the
L-operators for j−i > 1 and the currents Fi (z), Ei (z). Some of these relations, that we will need for our construction,
will be described in Section 5.2.

The current Hopf structure for the algebra Uq(ĝlN ) has been defined in [1],

∆(D) (Ei (z)) = Ei (z)⊗ 1+ k−i (z)
(
k−i+1(z)

)−1
⊗ Ei (z),

∆(D) (Fi (z)) = 1⊗ Fi (z)+ Fi (z)⊗ k+i (z)
(
k+i+1(z)

)−1
,

∆(D) (k±i (z)) = k±i (z)⊗ k±i (z).

(2.11)

We consider two types of Borel subalgebras of the algebra Uq(ĝlN ). Borel subalgebras Uq(b±) ⊂ Uq(ĝlN ) are
generated by the modes of the L-operators L±(z), respectively.

Another type of Borel subalgebras is related to the current realization of Uq(ĝlN ). The Borel subalgebra UF ⊂

Uq(ĝlN ) is generated by modes of the currents Fi [n], k+j [m], i = 1, . . . , N − 1, j = 1, . . . , N , n ∈ Z and m ≥ 0.
The Borel subalgebra UE ⊂ Uq(ĝlN ) is generated by modes of the currents Ei [n], k−j [−m], i = 1, . . . , N − 1,
j = 1, . . . , N , n ∈ Z and m ≥ 0. We will consider also a subalgebra U ′F ⊂ UF , generated by the elements Fi [n],
k+j [m], i = 1, . . . , N − 1, j = 1, . . . , N , n ∈ Z and m > 0, and a subalgebra U ′E ⊂ UE generated by the elements
Ei [n], k−j [−m], i = 1, . . . , N−1, j = 1, . . . , N , n ∈ Z and m > 0. Further, we will be interested in the intersections,

U−f = U ′F ∩Uq(b−), U+F = UF ∩Uq(b+) (2.12)

and will describe properties of projections to these intersections.

2.3. A weight function

We call a vector v a weight singular vector if it is annihilated by any non-negative mode of the currents Ei [n],
i = 1, . . . , N − 1, n ≥ 0 and is an eigenvector for the Cartan currents k+i (z), i = 1, . . . , N ,

E+i+1,i (z) · v = 0, k+i (z) · v = Λi (z) v, (2.13)

where Λi (z) is a meromorphic function, decomposed as a power series in z−1. The L-operator (2.9), acting on a
weight singular vector v, becomes upper-triangular:

L+i j (z)v = 0, i > j, L+i i (z)v = Λi (z)v, i = 1, . . . , N . (2.14)

We define a weight function by its comultiplication properties.
Let Π be the set {1, . . . , N − 1} of indices of simple positive roots of glN . A finite collection I = {i1, . . . , in} with

a linear ordering ii ≺ · · · ≺ in and a map ι : I → Π is called an ordered Π -multiset. Sometimes, we denote the map
ι by ιI and call it a “colouring map”. A morphism between two ordered Π -multisets I and J is a map m : I → J that
respects the orderings in I and J and intertwines the colouring maps: ιJ m = mιI . In particular, any subset I ′ ⊂ I
of a Π -ordered multiset has a unique structure of Π -ordered multiset, such that the inclusion map is a morphism of
Π -ordered multisets.

To each Π -ordered multiset I = {i1, . . . , in} we attach an ordered set of variables {ti | i ∈ I } = {ti1 , . . . , tin }. Each
variable has its own “colour”: ι(ik) ∈ Π .
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Let i and j be elements of some ordered Π -multiset. Define a rational function

γ (ti , t j ) =



qti − q−1t j

ti − t j
, if ι(i) = ι( j)+ 1,

ti − t j

q−1ti − qt j
, if ι( j) = ι(i)+ 1,

q−1ti − qt j

qti − q−1t j
, if ι(i) = ι( j),

1, otherwise.

(2.15)

Assume that for any representation V of Uq(ĝlN ), generated by a weight singular vector v, and any ordered
Π -multiset I = {i1, . . . in}, there is a V -valued rational function wV,I (ti1 , . . . , tin ) ∈ V depending on the variables
{ti | i ∈ I }. We call such a collection of rational functions a weight function w, if:
(a) The rational function, corresponding to the empty set, is equal to v,

wV,∅ ≡ v. (2.16)

(b) The function wV,I (ti1 , . . . , tin ) depends only on an isomorphism class of an ordered Π -multiset, that is, for any
isomorphism f : I → J of ordered Π -multisets we have

wV,I (t f (i)|i∈I ) = wV,J (t j | j∈J ). (2.17)

(c) The functions wV,I satisfy the following comultiplication property. Let V = V1 ⊗ V2 be a tensor product of two
representations generated by the singular vectors v1, v2 and weight series {Λ(1)b (u)} and {Λ(2)b (u)}, b = 1, . . . , N .
Then for any multiset I we have

wV,I (ti |i∈I ) =
∑

I=I1
∐

I2

wV1,I1(ti |i∈I1)⊗ wV2,I2(ti |i∈I2)ΦI1,I2(ti |i∈I )
∏
j∈I1

Λ(2)ι( j)(t j )

Λ(2)ι( j)+1(t j )
, (2.18)

where

ΦI1,I2(ti |i∈I ) =
∏

i∈I1, j∈I2
i≺ j

γ (ti , t j ). (2.19)

The summation in (2.18) runs over all possible decompositions of the ordered multiset I into a disjoint union of two
non-intersecting ordered submultisets I1 and I2.

Note that the comultiplication property relation (2.18) is not a recurrence relation, that is, it does not allow us to
reconstruct functions wV,I for all ordered multisets I starting from the functions which correspond to the multisets
with |I | = 1.

Let I = {i1, . . . , in} and J = { j1, . . . , jn} be two ordered Π -multisets. Let σ : I → J be an invertible map, which
intertwines the colouring maps, ιJσ = σ ιI , but does not necessarily respect the orderings in I and J (that is, σ is a
“permutation” on classes of isomorphisms of ordered multisets).

Let w(t j | j∈J ) be a function of the variables t j | j∈J . Define a pullback σ,γw(ti |i∈I ) by the rule

σ,γ
w(ti |i∈I ) = w(tσ(i)|i∈I )

∏
i, j∈I

i≺ j,σ ( j)≺σ(i)

γ (ti , t j ). (2.20)

Let I and I ′ be ordered Π -multisets, and σ : I → I ′ an invertible map, intertwining the colouring maps. Then its
restriction to any subset J ⊂ I is an invertible map of J to σ(J ), intertwining the colouring maps.

Proposition 2.1. Let w be a weight function, I, J ordered Π -multisets, and σ : I → J an invertible map, intertwining
the colouring maps. Then we have

σ,γ
wV,J (ti |i∈I ) =

∑
I=I1

∐
I2

σ,γ
wV1,σ (I1)

(ti |i∈I1)⊗
σ,γ
wV2,σ (I2)

(ti |i∈I2)ΦI1,I2(ti |i∈I )
∏
j∈I1

Λ(2)ι( j)(t j )

Λ(2)ι( j)+1(t j )
.
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The proposition means that the pullback operation (2.20) is compatible with the comultiplication rule (2.18).
We call a weight function w q-symmetric if for any ordered Π -multisets I and J and an invertible map σ : I → J ,

intertwining the colouring maps, we have
σ,γ
wV,J (ti |i∈I ) = wV,I (ti |i∈I ).

2.4. A modified weight function

Given elements i, j of some ordered multiset define two functions γ̃ (ti , t j ) and β(ti , t j ) by the formulae

γ̃ (ti , t j ) =


ti − t j

qti − q−1t j
, if ι(i) = ι( j)+ 1,

q−1ti − qt j

ti − t j
, if ι( j) = ι(i)+ 1,

1, otherwise

and

β(ti , t j ) =


q−1ti − qt j

ti − t j
, if ι(i) = ι( j),

1, otherwise.
(2.21)

A collection of rational V -valued functions wV,I (ti |i∈I ), depending on a representation V of Uq(ĝlN ), generated
by a weight singular vector v, and an ordered Π -multiset I , is called a modified weight function w if it satisfies
conditions (a), (b); see (2.16) and (2.17), and condition (c′):

(c′) Let V = V1 ⊗ V2 be a tensor product of two representations generated by the singular vectors v1, v2 and weight
series {Λ(1)b (u)} and {Λ(2)b (u)}, b = 1, . . . , N . Then for any multiset I we have

wV,I (ti |i∈I ) =
∑

I=I1
∐

I2

wV1,I1(ti |i∈I1)⊗ wV2,I2(ti |i∈I2) · Φ̃I1,I2(ti |i∈I )
∏
j∈I1

Λ(2)ι( j)(t j )
∏
j∈I2

Λ(1)ι( j)+1(t j ), (2.22)

where

Φ̃I1,I2(ti |i∈I ) =
∏

i∈I1, j∈I2

β(ti , t j )
∏

i∈I2, j∈I1
i≺ j

γ̃ (ti , t j ).

Let I = {i1, . . . , in} and J = { j1, . . . , jn} be two ordered Π -multisets, and σ : I → J an invertible map,
intertwining the colouring maps, ιJσ = σ ιI . Let w(t j | j∈J ) be a function of the variables t j | j∈J . Define a pullback
σ,γ̃w(ti |i∈I ) by the rule

σ,γ̃w(ti |i∈I ) = w(tσ(i)|i∈I )
∏
i, j∈I

i≺ j,σ ( j)≺σ(i)

γ̃ (ti , t j ). (2.23)

Proposition 2.2. Let w be a modified weight function, I, J ordered Π -multisets, and σ : I → J an invertible map,
intertwining the colouring maps. Then we have

σ,γ̃wV,J (ti |i∈I ) =
∑

I=I1
∐

I2

σ,γ̃wV1,σ (I1)
(ti |i∈I1)⊗

σ,γ̃wV2,σ (I2)
(ti |i∈I2)

× Φ̃I1,I2(ti |i∈I )
∏
j∈I1

Λ(2)ι( j)(t j )
∏
j∈I2

Λ(1)ι( j)+1(t j ).
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We call a modified weight function w q-symmetric if for any two ordered Π -multisets I and J and an invertible map
σ : I → J , intertwining the colouring maps, we have

σ,γ̃wV,J (ti |i∈I ) = wV,I (ti |i∈I ).

For an ordered Π -multiset I = {i1, i2, . . . , in}, let Ī = {in, in−1, . . . , i1} be the ordered Π -multiset with the
colouring map, ι Ī (ik) = ιI (ik), k = 1, . . . , n.

Proposition 2.3. (i) Let w be a weight function. Then the collection wV,I (ti |i∈I ), where

wV,I (ti |i∈I ) = wV, Ī (ti |i∈ Ī )
∏
i≺ j

β(ti , t j )
∏
i∈I

Λι(i)+1(ti ) (2.24)

is a modified weight function.
(ii) Let w be a modified weight function. Then the collection wV,I (ti |i∈I ) where

wV,I (ti |i∈I ) = wV, Ī (ti |i∈ Ī )
∏
i≺ j

1
β(t j , ti )

∏
i∈I

1
Λι(i)+1(ti )

is a weight function.
(iii) If w is a q-symmetric weight function, then w is q-symmetric modified weight function, and vice versa.

The last proposition means that we have a bijection between weight functions and modified weight functions.

3. Weight functions and Drinfeld currents

3.1. Quantum affine algebra Uq(ŝlN )

We are using two descriptions of the quantum affine algebra Uq(ŝlN ): in terms of Chevalley generators and the
current realization.

The algebra Uq(ŝlN ) (with zero central charge and the grading element dropped out) is generated by the Chevalley
generators e±αi , k±1

αi
, where i = 0, 1, . . . , N − 1 and

∏N
i=0 kαi = 1, subject to relations

kαi e±α j k
−1
i = q

±ai j
i e±α j , [ei , e−α j ] = δi j

kαi − k−1
αi

qi − q−1
i

, (3.1)

mi, j∑
r=0

(−1)r e(r)±αi
e±α j e

(mi, j−r)
±αi

= 0, where mi, j = 1− (αi , α j ), i 6= j,

e(r)±αi
=

er
±αi

[k]q !
, [k]q ! = [k]q [k − 1]q · · · [2]q [1]q , [k]q =

qk
− q−k

q − q−1 , (3.2)

and ai, j = (αi , α j ) is the Cartan matrix of the affine algebra ŝl.
The comultiplication map is given by the formulae

∆(eαi ) = eαi ⊗ 1+ kαi ⊗ eαi ,

∆(e−αi ) = 1⊗ e−αi + e−αi ⊗ k−1
αi
,

∆(kαi ) = kαi ⊗ ki .

(3.3)

In the current realization, Uq(ŝlN ) is generated by the elements ei [n], fi [n], where i = 1, . . . , N − 1, n ∈ Z; ψ±i [n],

i = 1, . . . , N − 1, n ≥ 0, ψ−i [0] =
(
ψ+i [0]

)−1. They are combined into generating functions

ei (z) =
∑
n∈Z

ei [n]z−n, fi (z) =
∑
n∈Z

fi [n]z−n, ψ±i (z) =
∑
n≥0

ψ±i [n]z
∓n,
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which satisfy the following relations:

(z − q(αi ,α j )w)ei (z)e j (w) = e j (w)ei (z)(q(αi ,α j )z − w),

(z − q−(αi ,α j )w) fi (z) f j (w) = f j (w) fi (z)(q−(αi ,α j )z − w),

ψ±i (z)e j (w)
(
ψ±i (z)

)−1
=
(q(αi ,α j )z − w)

(z − q(αi ,α j )w)
e j (w),

ψ±i (z) f j (w)
(
ψ±i (z)

)−1
=
(q−(αi ,α j )z − w)

(z − q−(αi ,α j )w)
f j (w),

ψ
µ
i (z)ψ

ν
j (w) = ψ

ν
j (w)ψ

µ
i (z), µ, ν = ±,

[ei (z), f j (w)] =
δi jδ(z/w)
q − q−1

(
ψ+i (z)− ψ

−

i (w)
)
,

and

Sym
z1,z2

(
ei (z1)ei (z2)e j (w)− (q + q−1)ei (z1)e j (w)ei (z2)+ e j (w)ei (z1)ei (z2)

)
= 0,

Sym
z1,z2

(
fi (z1) fi (z2) f j (w)− (q + q−1) fi (z1) f j (w) fi (z2)+ f j (w) fi (z1) fi (z2)

)
= 0,

where i − j = ±1.
The two realizations are related by the formulae

kαi = ψ
+

i [0], eαi = ei [0], e−αi = fi [0], i = 1, . . . , N − 1,
eα0 = [e1[0], [e2[0], . . . , [eN−2[0], eN−1[−1]q ]q . . .]q ,
e−α0 = [. . . [ fN−1[1], fN−2[0]]q−1 , . . . , f2[0]]q−1 , f1[0]]q−1 ,

where [ei [k], e j [l]]q = ei [k]e j [l] − q(αi ,α j )e j [l]ei [k] and [ fi [k], f j [l]]q−1 = f j [l] fi [k] − q−(αi ,α j ) fi [k] f j [l].
The Drinfeld comultiplication ∆(D) for the algebra Uq(ŝlN ) looks as follows:

∆(D)ei (z) = ei (z)⊗ 1+ ψ−i (z)⊗ ei (z),

∆(D) fi (z) = 1⊗ fi (z)+ fi (z)⊗ ψ+i (z),

∆(D)ψ±i (z) = ψ
±

i (z)⊗ ψ
±

i (z).

The quantum affine algebra Uq(ŝlN ) has two types of Borel subalgebras. The Borel subalgebras Uq(b
sl
±) ⊂ Uq(ŝlN )

are generated by the Chevalley generators eαi , k±1
αi

, i = 0, . . . , N − 1 and e−αi , k±1
αi

, i = 0, . . . , N − 1, respectively.
They contain Hopf coideals Uq(n

sl
±) ⊂ Uq(b

sl
±), generated by the Chevalley generators eαi , and e−αi , i = 0, . . . , N−1,

respectively.
The Borel subalgebra U sl

F ⊂ Uq(ŝlN ) is generated by the elements fi [n], where i = 1, . . . , N − 1, n ∈ Z and
ψ+i [n], i = 1, . . . , N − 1, n ≥ 0. The Borel subalgebra U sl

E ⊂ Uq(ŝlN ) is generated by the elements ei [n], where
i = 1, . . . , N − 1, n ∈ Z and ψ−i [n], i = 1, . . . , N − 1, n ≥ 0. We are interested in their intersections,

U sl−
f = U sl

F ∩Uq(n
sl
−), U sl+

F = U sl
F ∩Uq(b

sl
+). (3.4)

According to [5], these intersections satisfy coideal properties

∆(D)(U sl+
F ) ⊂ Uq(ŝlN )⊗U sl+

F , ∆(D)(U sl−
f ) ⊂ U sl−

f ⊗Uq(ŝlN )

and the multiplication m in Uq(ŝlN ) induces an isomorphism of vector spaces

m : U sl−
f ⊗U sl+

F → U sl
F .

The projection operator P : U sl
F → U sl+

F is defined by the rule

P( f− f+) = ε( f−) f+, f− ∈ U sl−
f ⊂ Uq(ŝlN ), f+ ∈ U sl+

F ⊂ Uq(ŝlN ). (3.5)
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3.2. The embedding of Uq(ŝlN ) to Uq(ĝlN )

Consider the embedding Θ : Uq(ŝlN ) ↪→ Uq(ĝlN ) given by the following formulae in the current realizations of
Uq(ŝlN ) and Uq(ĝlN ):

Θ(ei (z)) = (q − q−1)−1 Ei (q−i+1z), Θ( fi (z)) = (q − q−1)−1 Fi (q−i+1z),

Θ(ψ±i (z)) = k±i (q
−i+1z)

(
k±i+1(q

−i+1z)
)−1

.
(3.6)

Let g+(z), g−(z) be power series with coefficients in C,

g+(z) = g+0 + g1z−1
+ · · · + gnz−n

+ · · · ,

g−(z) = g−0 + g−1z + · · · + g−nzn
+ · · · ,

(3.7)

satisfying the condition

g+0 g−0 = 1. (3.8)

A pair g±(z) defines an automorphism Tg+(z), g−(z) of the algebra Uq(ĝlN ) by the rule

Tg+(z), g−(z)L
+(z) = g+(z)L+(z), Tg+(z), g−(z)L

−(z) = g−(z)L−(z). (3.9)

The following facts are well known.

Proposition 3.1. (i) The embedding Θ is a morphism of Hopf algebras with respect to any of the comultiplications
∆ or ∆(D).

(ii) The image of Θ is the subalgebra of invariants of all automorphisms Tg+(z),g−(z) in Uq(ĝlN ).
(iii) The embedding Θ maps the Borel subalgebras Uq(b

sl
±) ⊂ Uq(ŝlN ) into the corresponding Borel subalgebras

Uq(b±) ⊂ Uq(ĝlN ), and the current Borel subalgebra U sl
F ⊂ Uq(ŝlN ) into the current Borel subalgebra

UF ⊂ Uq(ĝlN ).

3.3. Projections

Clearly, the Borel subalgebras in Uq(ŝlN ) and Uq(ĝlN ) differ only by Cartan currents. We have N Cartan currents
k+i (z), i = 1, . . . , N , in Uq(b+) ⊂ Uq(ĝlN ) and in UF ⊂ Uq(ĝlN ), while we have N − 1 Cartan currents ψ+i (z),

i = 1, . . . , N − 1, in Uq(b
sl
+) ⊂ Uq(ŝlN ) and in U sl

F ⊂ Uq(ŝlN ), and Θ(ψ+i (z)) = k+i (q
−i+1z)

(
k+i+1(q

−i+1z)
)−1.

We can choose modes of one of the currents k+1 (z) as generators of an abelian subalgebra A1. Then the
multiplication in Uq(ĝlN ) establishes an isomorphism (of vector spaces) between the Borel subalgebra Uq(b+) ⊂

Uq(ĝlN ) and the tensor product of A1 and the image of Borel subalgebra Uq(b
sl
+) ⊂ Uq(ŝlN ). An analogous statement

holds for the current Borel subalgebras U sl
F ⊂ Uq(ŝlN ) and UF ⊂ Uq(ĝlN ).

This observation implies that the algebras U−f = U ′F ∩Uq(b−) ⊂ Uq(ĝlN ) and U+F = UF ∩Uq(b+) ⊂ Uq(ĝlN ),
see (2.12), satisfy the same properties as the analogous subalgebras (3.4) of Uq(ŝlN ). Namely, they are coideals,

∆(D)(U+F ) ⊂ Uq(ĝlN )⊗U+F , ∆(D)(U−f ) ⊂ U−f ⊗Uq(ĝlN ),

the multiplication m in Uq(ĝlN ) induces an isomorphism of vector spaces

m: U−f ⊗U+F → UF ,

and the projection operator P: UF ⊂ Uq(ĝlN )→ U+F is defined similar to (3.5):

P( f− f+) = ε( f−) f+, f− ∈ U−f ⊂ Uq(ĝlN ), f+ ∈ U+F ⊂ Uq(ĝlN ). (3.10)
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Proposition 3.1 yields that the definitions (3.5) and (3.10) are consistent, that is, for any element f ∈ UF ⊂ Uq(ŝlN ),
we have

Θ (P( f )) = P (Θ( f )) , (3.11)

where P in the left hand side is the projection operator (3.5) and P in the right hand side is the projection operator
(3.10).

3.4. A construction of the weight function

Let V be a representation of Uq(ĝlN ) generated by a singular vector v. Let I = {i1, . . . , in} be an ordered
Π -multiset. Set

wV,I ({ti |i∈I }) = P
(
Fι(i1)(ti1) · · · Fι(in)(tin )

)
v. (3.12)

Theorem 1. A collection of V -valued rational functions wV,I ({ti |i∈I }), given by (3.12), is a q-symmetric weight
function.

Proof. Due to (3.11) and (3.6),

wV,I ({ti |i∈I }) = (q − q−1)nΘ
(
P
(

fι(i1)(t̃i1) · · · fι(in)(t̃in )
))
v,

where t̃i1 , . . . , t̃in are the variables ti1 , . . . , tin , shifted by some powers of q. Therefore, the collection of functions
wV,I ({ti |i∈I }) is a Uq(ŝlN ) weight function up to a certain shift of variables, and Theorem 1 is a particular case of
Theorem 4 in [5]. Let us recall that the key assertion used in the Proof of Theorem 4 in [5] is the following relation
for the comultiplications ∆, ∆(D), and the projection operator P , that holds in Uq (̂g) for any simple Lie algebra g: for
any element f ∈ Ug

F and any singular vectors v1, v2, one has

∆(P( f )) v1 ⊗ v2 = (P ⊗ P)∆(D)( f ) v1 ⊗ v2. (3.13)

The q-symmetry of the weight function w follows from the defining relations (2.7). �

For an ordered Π -multiset I = {i1, . . . , in} set

wP
V,I ({ti |i∈I }) = P

(
Fι(in)(tin ) · · · Fι(i1)(ti1)

)
v ·

∏
i≺ j

β(ti , t j )
∏
i∈I

Λι(i)+1(ti ), (3.14)

where β(ti , t j ) is defined by (2.21). Theorem 1 and Proposition 2.3 imply the following statement.

Corollary 3.2. A collection of V -valued rational functions wP
V,I ({ti |i∈I }), given by (3.14), is a q-symmetric modified

weight function.

4. L-operators and modified weight functions

4.1. Uq(ĝlN ) monodromy

We borrow the construction below from [10]. We will need only one L-operator, say L+(z), which we denote as
L(z). It generates the Borel subalgebra Uq(b+); see Section 2.1.

Let M be a non-negative integer. Let L(k)(z) ∈
(
CN )⊗M be the L-operator acting as L(z) on k-th tensor factor in

the product
(
CN )⊗M and as the identity operator in all other factors. Consider a series in M variables

T[M](u1, . . . , uM ) = L(1)(u1) · · · L(M)(uM ) · R(M,...,1)(uM , . . . , u1) (4.1)

with coefficients in
(
End(CN )

)⊗M
⊗Uq(b+), where

R(M,...,1)(uM , . . . , u1) =

←∏
1≤i< j≤M

R( j i)(u j , ui ). (4.2)
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In the ordered product of R-matrices (4.2) the factor R( j i) is to the left of the factor R(ml) if j > m, or j = m and
i > l. Note that due to the Yang–Baxter equation for L-operators, element (4.1) can be rewritten as follows:

T[M](u1, . . . , uM ) = R(M,...,1)(uM , . . . , u1) · L(M)(uM ) · · · L(1)(u1). (4.3)

Consider a special multiset In̄ labeled by a sequence of non-negative integers n̄ = {n1, n2, . . . , nN−1}, n̄ ∈ ZN−1
≥0 ,

|n̄| = n1 + · · · + nN−1. As an ordered set, In̄ consists of integers i such that 1 ≤ i ≤ |n̄|. The colouring map is

ι(i) = a ∈ Π for 1+ n1 + · · · + na−1 ≤ i ≤ n1 + · · · + na . (4.4)

Let us change the numeration of the set of variables {ti |i∈In̄ } to

t̄n̄ = {ta
i } = t1

1 , . . . , t1
n1
, t2

1 , . . . , t2
n2
, . . . , t N−1

1 , . . . , t N−1
nN−1

. (4.5)

Following [10], set

Bn̄(t̄n̄) =
N−1∏
a=1

∏
1≤i< j≤na

ta
i − ta

j

q−1ta
i − qta

j

× ((tr)⊗|n̄| ⊗ id)(T[|n̄|](t1
1 , . . . , t1

n1
; . . . ; t N−1

1 , . . . , t N−1
nN−1

)e⊗n1
21 ⊗ · · · ⊗ e⊗nN−1

N ,N−1 ⊗ 1). (4.6)

Here tr : End(CN ) → C is the standard trace map. The coefficients of Bn̄(t̄n̄) are elements of the Borel subalgebra
Uq(b+).

Let Sn̄ = Sn1×· · ·× SnN−1 be the direct product of the symmetric groups. The group Sn̄ naturally acts on functions
of t1

1 , . . . t
N−1
nN−1

by permutations of variables with the same superscript; if σ = σ 1
× · · · × σ N−1

∈ Sn̄ , then

σ t̄ n̄ = (t
1
σ 1(1), . . . , t1

σ 1(n1)
; . . . ; t N−1

σ N−1(1), . . . , t N−1
σ N−1(nN−1)

).

Proposition 4.1. For any σ ∈ Sn̄ , we have

Bn̄(t̄n̄) = Bn̄(
σ t̄ n̄). (4.7)

Proof. It suffices to prove the claim assuming that σ is the product of a single simple transposition and the identity
permutations. In other words, σ permutes just one pair of variables.

Relations (2.4), the Yang–Baxter equation (2.2) and the inversion relation (2.3) imply that

P(i,i+1)R(i,i+1)(ui , ui+1)T[M](u1, . . . , ui , ui+1, . . . , uM )

= T[M](u1, . . . , ui+1, ui , . . . , uM )P(i+1,i)R(i+1,i)(ui+1, ui ), (4.8)

where P(i,i+1) is the permutation operator, P(12)
=
∑N

i, j=1 ei j ⊗ e j i . It is easy to check that

P(12)e j+1, j ⊗ e j+1, j = e j+1, j ⊗ e j+1, j = e j+1, j ⊗ e j+1, j P(12) (4.9)

and

R(12)(u1, u2)e j+1, j ⊗ e j+1, j =
qu1 − q−1u2

u1 − u2
e j+1, j ⊗ e j+1, j

= e j+1, j ⊗ e j+1, j R(12)(u1, u2). (4.10)

If σ permutes just one pair of variables, then relations (4.8)–(4.10) and the cyclic property of the trace yield formula
(4.7). For example, in the simplest nontrivial case

B(u2, u1) =
u2 − u1

q−1u2 − qu1
tr
(
T(u2, u1)e j+1, j ⊗ e j+1, j

)
=

u2 − u1

q−1u2 − qu1
tr
(

P(12)R(12)(u1, u2)T(u1, u2)R(21)(u2, u1)
−1 P(12)e j+1, j ⊗ e j+1, j

)
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=
u1 − u2

q−1u1 − qu2
tr
(
T(u1, u2)e j+1, j ⊗ e j+1, j

)
= B(u1, u2).

Proposition 4.1 is proved. �

Let V be a Uq(ĝlN )-module generated by a singular vector v; cf. (2.13). Let In̄ be a special multiset (4.4). Let t̄n̄
be the set of variables corresponding to the set In̄ . Set

wBV,In̄
({ti |i∈In̄ }) = Bn̄(t̄n̄)v. (4.11)

Clearly, special multisets given by the condition (4.4) are Π -ordered multisets with an increasing colouring
function. For a Π -ordered multiset I , set

na = #{i ∈ I | ιI (i) = a},

a = 1, . . . N − 1, and n̄ = (n1, . . . nN−1). Let σ : I → In̄ be a unique invertible map intertwining the colouring maps
and such that σ(i) ≺ σ( j) iff ιI (i) < i I ( j), or ιI (i) = i I ( j) and i ≺ j . Set

wBV,I (ti |i∈I ) =
σ,γ̃wBV,In̄

(ti |i∈In̄ ). (4.12)

Theorem 2. A collection of V -valued rational functions wBV,I ({ti |i∈I }), given by (4.11), (4.12), is a q-symmetric
modified weight function.

Proof. The collection wBV,I ({ti |i∈I }) is q-symmetric due to formula (4.12) and Proposition 4.1. Properties (2.16)
and (2.17) of the collection wBV,I ({ti |i∈I }) are straightforward, and the comultiplication property (2.22) follows from
Theorem 3.6.3 in [10]. �

5. A correspondence of the two constructions

The goal of this section is to verify the following statement.

Conjecture. The modified weight functions wP and wB, defined respectively by formulae (3.14) and (4.11), (4.12),
coincide.

The conjecture is equivalent to the following relations. Let v be a weight singular vector in some Uq(ĝlN )-module;
cf. (2.13). Take a sequence n̄ = {n1, . . . , nN−1}, and let t̄n̄ be the set of variables (4.5). Then

Bn̄(t̄n̄)v = P
(

FN−1(t N−1
nN−1

) · · · FN−1(t N−1
1 ) · · · F1(t1

n1
) · · · F1(t1

1 )
)
v

×

N−1∏
a=1

( ∏
1≤i< j≤na

q−1ta
i − qta

j

ta
i − ta

j

∏
1≤i≤na

Λa+1(ta
i )

)
. (5.1)

In this paper we will prove the conjecture only for a special case; see Theorem 3. Set

R+(u, v) =
u − v

qu − q−1v
R(u, v) ∈ End(CN

⊗ CN )⊗ C[[v/u]]

and

R−(u, v) =
(

R+(v, u)−1
)21
∈ End(CN

⊗ CN )⊗ C[[u/v]],

where R(u, v) is defined in (2.1). Define the evaluation representation π (1)z of Uq(ĝlN ) in the coordinate space CN

by the rule π (1)z
(
L±(u)

)
= R±(u, z). We also denote the representation space of π (1)z as Vω1(z). The first coordinate

vector in CN is a weight singular vector. We denote it by vω1 .
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Theorem 3. Let V be a subquotient of the tensor product Vω1(z1)⊗ · · · ⊗ Vω1(zn), generated by the singular vector
v = vω1 ⊗ · · · ⊗ vω1 . Then for any ordered Π -multiset I

wP
V ({ti |i∈I })v = wBV ({ti |i∈I })v. (5.2)

Proof. Due to the comultiplication properties of the weight functions it is sufficient to prove Theorem 3 for
n = 1. In this case, the weight functions generated by the singular vector vω1 are nontrivial only if |I | < N
and ιI (I ) = {1, 2, . . . , |I |}. Since the weight functions wP and wB are q-symmetric, it is enough to consider the
case I = {1, 2, . . . , |I |} with the colouring map ιI (i) = i for any i ∈ I . In this case, formula (5.2) follows from
Proposition 5.1. �

Let the sequence n̄ be such that n1 = · · · = nk = 1, nk+1 = · · · = nN−1 = 0. In this case, the set of variables
(4.5) takes the form

t̄ = {t1, t2, . . . , tk
}, (5.3)

where we omit the unnecessary subscript. In addition, write B[k](t̄) instead of Bn̄(t̄). In the case described,
formula (5.1) reads

B[k](t1, . . . , tk) v = P
(

Fk(tk) · · · F1(t1)
) k∏

j=1

Λ j+1(t j )v

and follows from Proposition 5.1
Say that a vector v is a singular vector if

E+i+1,i (z) · v = 0, i = 1, . . . , N − 1. (5.4)

Equivalently, a vector v is a singular vector if

L+i j (z)v = 0, 1 ≤ j < i ≤ N . (5.5)

Compared with (2.13), (2.14), here we drop the requirement that the vector v is an eigenvector of the Cartan currents
k+i (z), i = 1, . . . , N , and the diagonal entries L i i (u), i = 1, . . . , N , of the L-operator. Notice that for a singular
vector v, we have

ki (u) v = L i i (u) v, i = 1, . . . , N ,

and L i i (u)L j j (t) v = L j j (t)L i i (u) v for any i, j .

Proposition 5.1. Let v be a singular vector. Then for any k = 1, . . . , N − 1,

B[k](t1, . . . , tk) v = P
(

Fk(tk) · · · F1(t1)
)

Lk+1,k+1(tk) · · · L22(t1) v. (5.6)

In the rest of this section we are proving Proposition 5.1. The idea of the proof is as follows. We will
introduce elements B[l,k](t l , . . . , tk) ∈ Uq(b+) ⊂ Uq(ĝlN ) such that B[1,k](t1, . . . , tk) = B[k](t1, . . . , tk) and
will obtain relations (5.9) for those elements. We will also consider projections of partial products of currents,
P
(
Fk(tk) · · · Fl(t l)

)
and will obtain relations (5.27) for those projections. The fact that relations (5.9) and (5.27)

are almost the same will allow us to establish formula (5.6).

5.1. Recurrence relation for B[l,k](t)v

For any l = 1, . . . , k introduce an element B[l,k](t l , . . . , tk) ∈ Uq(b+) ⊂ Uq(ĝlN ):

B[l,k](t l , t l+1, . . . , tk) = tr1,2,...,k−l+1

(
R(k−l+1,...,1)(tk, . . . , t l)

× L(k−l+1)(tk) · · · L(2)(t l+1)L(1)(t l)e(k−l+1)
k+1,k · · · e

(2)
l+2,l+1e(1)l+1,l

)
. (5.7)
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Recall that for any A ∈ End(CN ) we denote by A(i) ∈ End(CN
⊗ · · · ⊗ CN ) the matrix acting as A in the i-th factor

of the tensor product CN
⊗ · · · ⊗ CN and as the identity matrix in all other factors. We also set

B[k+1,k](·) ≡ 1. (5.8)

It is clear that B[1,k](t1, . . . , tk) coincides with B[k](t1, . . . , tk).
Let v be a singular weight vector. Recall that L i,i (t) v = ki (t) v = Λi (t) v. We will show that the action of the

element B[l,k](t l , . . . , tk) on the singular vector v can be expressed using a linear combination of products of the
Gauss coordinates F+i, j (t

j−1) with l ≤ i < j ≤ k + 1. For example, we have B[k,k](tk) = Lk,k+1(tk), so that
B[k,k](tk) v = F+k,k+1(t

k)Lk+1,k+1(tk) v, and

B[k−1,k](tk−1, tk) = Lk,k+1(tk)Lk−1,k(tk−1)+
(q − q−1) tk

tk − tk−1 Lk−1,k+1(tk)Lk,k(tk−1)

so that

B[k−1,k](tk−1, tk) v =

(
F+k,k+1(t

k) F+k−1,k(t
k−1)+

(q − q−1) tk

tk − tk−1 F+k−1,k+1(t
k)

)
Lk+1,k+1(tk) Lk,k(tk−1) v.

To obtain the required presentation in general, we will use the following statement.

Proposition 5.2. We have

B[l,k](t l , . . . , tk) v =

k+1∑
m=l+1

B[m,k](tm, . . . , tk)F+l,m(t
m−1)

× Lm,m(tm−1) · · · Ll+1,l+1(t l) v ·

m−1∏
j=l+1

(q − q−1) t j

t j − t j−1 . (5.9)

We start the proof of this proposition from the next lemma.

Lemma 5.3.

B[l,k](t l , . . . , tk) v = B[l+1,k](t l+1, . . . , tk) · Ll,l+1(t l) v

+ tr2,...,k−l+1

(
R(k−l+1,...,2)(tk, . . . , t l+1)L(k−l+1)(tk) · · · L(2)(t l+1)

× e(k−l+1)
k+1,k · · · e

(3)
l+3,l+2e(2)l+2,l

) (q − q−1) t l+1

t l+1 − t l Ll+1,l+1(t l) v. (5.10)

Proof. To obtain formula (5.10) we calculate the trace over the first copy of CN in formula (5.7). Using the
Yang–Baxter equation (2.2), we get

R(k−l+1,...,2,1)(tk, . . . , t l+1, t l) = R(2,1)(t l+1, t l) · · · R(k−l+1,1)(tk−l+1, t l)R(k−l+1,...,2)(tk, . . . , t l+1).

Due to relations (2.14), we can write the right hand side of formula (5.7) applied to the weight singular vector v as a
sum of two terms:

tr2,...,k−l+1

(
tr1

(
R(21)(t l+1, t l) · · · R(k−l+1,1)(tk, t l)e(1)ll

)
· X · Ll,l+1(t l) v

+ tr1

(
R(21)(t l+1, t l) · · · R(k−l+1,1)(tk, t l)e(1)l+1,l

)
· X · Ll+1,l+1(t l) v

)
, (5.11)

where

X = R(k−l+1,...,2)(tk, . . . , t l+1) L(k−l+1)(tk) · · · L(2)(t l+1)e(k−l+1)
k+1,k · · · e

(2)
l+2,l+1.
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Now we calculate the traces tr1 in formula (5.11) taking into account the matrix structure of the R-matrix (2.1) and
the multiplication rule: eab ecd = 0 for b 6= c and eab ebc = eac. As a result, we get

tr1

(
R(21)(t l+1, t l) · · · R(k−l+1,1)(tk, t l)e(1)ll

)
= 1(2) 1(3) · · · 1(k−l+1)

+

k−l+1∑
i=2

e(i)ll Yi (5.12)

and

tr1

(
R(21)(t l+1, t l) · · · R(k−l+1,1)(tk, t l)e(1)l+1,l

)
=
(q − q−1) t l+1

t l+1 − t l e(2)l+1,l 1(3) · · · 1(k−l+1)
+

k−l+1∑
i=3

e(i)l+1,l Y ′i , (5.13)

where Yi , Y ′i are some elements of End(CN
⊗ · · · ⊗ CN ). Observe that only the first terms in the right hand sides of

formulae (5.12) and (5.13) contribute nontrivially to the trace tr2,...,k−l+1 in formula (5.11) because tr (eab A ecd) = 0
for any A ∈ End(CN ) unless a = d . To complete the proof of Lemma 5.3, notice that

tr2,...,k−l+1 X = B[l+1,k](t l+1, . . . , tk)

and tr (el+1,l A el+2,l+1) = tr (A el+2,l) for any A ∈ End(CN ). �

Proof of Proposition 5.2. To prove this proposition we use induction with respect to N .
The first term in the right hand side of formula (5.10) is exactly the term in the right hand side of formula (5.9) for

m = l + 1, because Ll,l+1(t l) v = F+l,l+1(t
l) Ll+1,l+1(t l) v, and it suffices to show that

tr2,...,k−l+1(R(k−l+1,...,2)(tk, . . . , t l+1)L(k−l+1)(tk) · · · L(2)(t l+1)e(k−l+1)
k+1,k · · · e

(3)
l+3,l+2e(2)l+2,l) v

=

k+1∑
m=l+2

B[m,k](tm, . . . , tk)F+l,m(t
m−1) Lmm(tm−1) · · · Ll+2,l+2(t l+1) v ·

m−1∏
j=l+2

(q − q−1) t j

t j − t j−1 . (5.14)

Consider the embedding ψ : Uq(ĝlN−1) ↪→ Uq(ĝlN ) given by the rule

ψ
(

L [N−1]
i j (t)

)
= L i+θ(i>l), j+θ( j>l)(t), i, j = 1, . . . , N − 1,

where θ(m > l) = 0 for m ≤ l, and θ(m > l) = 1 for m > l. Assume that Uq(ĝlN−1) acts by the composition of
the embedding ψ and the action of Uq(ĝlN ). Then the vector v is singular with respect to the action of Uq(ĝlN−1).

Taking into account the matrix structure of the R-matrix (2.1), we can verify that ψ
(
B[N−1]
[m−1,k−1](t

m, . . . , tk)
)
=

B[m,k](tm, . . . , tk) for m > l, and the left hand side of formula (5.14) coincides with ψ
(
B[N−1]
[l,k−1](t

l+1, . . . , tk)
)

. In
addition, observe that

ψ

((
F+l,m−1

)[N−1]
(t)
)
= F+l,m(t), m ≥ l + 2.

As a result, taking formula (5.9) for Uq(ĝlN−1) with parameters l, k − 1, t l+1, . . . tk , and applying the embedding ψ
we obtain formula (5.14). Proposition 5.2 is proved. �

5.2. Composed currents and Gauss coordinates

In the next two subsections we will show that the projections of products of currents, P
(
Fk(tk) · · · Fl(t l)

)
, satisfy

relations (5.27) which are similar to relations (5.9) for the elements B[l,k](t l , . . . , tk). We will use those relations in
Section 5.4 to prove Proposition 5.1.

Following [3,4,7], we will introduce the composed currents Fi, j (t) for i < j ; see (5.15). The composed currents
for an arbitrary quantum affine algebra were defined in [3]. The currents Fi, j (t) to be used here are images of the
composed currents for the algebra Uq(ŝlN ) under the embedding Θ : Uq(ŝlN ) ↪→ Uq(ĝlN ) defined in Section 3.2.
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The currents Fi,i+1(t), i = 1, . . . N−1, are just the currents Fi (t); cf. (2.6). It follows from formulae (2.10) and the
definition of the projection P , see (3.10), that P

(
Fi,i+1(t)

)
= F+i,i+1(t), that is, the projection of the current Fi,i+1(t)

coincides with the Gauss coordinate F+i,i+1(t) of the corresponding L-operator [2]. There exists a similar relation
between other Gauss coordinates F+i, j (t) and projections of the composed currents Fi, j (t); see Proposition 5.5.

According to [3], the composed currents Fi, j (t) belong to a suitable completion of the Uq(ĝlN ) subalgebra
generated by modes Fi [n], n ∈ Z, i = 1, . . . , N − 1. Elements of the completion are infinite sums of monomials
which are ordered products Fi1 [n1] · · · Fik [nk] with n1 ≤ · · · ≤ nk . We denote this completion by U f .

The completion U f determines analyticity properties of products of currents; see [3]. One can show that for
|i − j | > 1, the product Fi (t)F j (w) is an expansion of a function analytic at t 6= 0, w 6= 0. The situation is
more delicate for j = i, i ± 1. The products Fi (t)Fi (w) and Fi (t)Fi+1(w) are expansions of analytic functions at
|w| < |q2t |, while the product Fi (t)Fi−1(w) is an expansion of an analytic function at |w| < |t |. Moreover, the only
singularities of the corresponding functions in the whole region t 6= 0, w 6= 0, are simple poles at the respective
hyperplanes, w = q2t for j = i, i + 1, and w = t for j = i − 1.

The composed currents Fi, j (t), i < j , are given by the rule

Fi, j (t) = (q − q−1) j−i−1 Fi (t)Fi+1(t) · · · F j−1(t). (5.15)

For example, Fi,i+1(t) = Fi (t), and Fi,i+2(t) = (q − q−1)Fi (t)Fi+1(t). The last product is well defined according
to the analyticity properties of the product Fi (t)Fi+1(w), described above. In a similar way, one can show inductively
that the product in the right hand side of (5.15) makes sense for any i < j .

Products of the composed currents have the following analyticity properties. For any i < r < s < j , the products
Fi,r (t)Fs, j (w) and Fs, j (t)Fi,r (w) are expansions of functions analytic at t 6= 0, w 6= 0. For any i < s < j , the
product Fi,s(t)Fs, j (w) is an expansion of an analytic function at |w| < |q2t |, and the product Fs, j (t)Fi,s(w) is an
expansion of an analytic function at |w| < |t |. Moreover, the only singularities of the corresponding functions in the
whole region t 6= 0, w 6= 0 are simple poles at the respective hyperplanes, w = q2t for Fi,s(t)Fs, j (w), and w = t for
Fs, j (t)Fi,s(w).

The composed currents obey commutation relations

(q−1w − qt)Fi,s(w)Fs, j (t) = (w − t)Fs, j (t)Fi,s(w), (5.16)

for any i < s < j , and

Fi,r (w)Fs, j (t) = Fs, j (t)Fi,r (w), (5.17)

for any i < r < s < j , which can be observed from the basic relations (2.7) and formula (5.15). In addition, the
residue formula

Fi, j (t) = − res
w=t

Fs, j (t)Fi,s(w)
dw
w

(5.18)

holds for any s = i + 1, . . . , j − 1. Since the total sum of residues of an analytic functions equals zero, taking into
account commutation relations (5.16), we also get

Fi, j (t) = res
w=0

(
Fs, j (t)Fi,s(w)

dw
w

)
+ res
w=∞

(
q−1w − qt
w − t

Fi,s(w)Fs, j (t)
dw
w

)
. (5.19)

Set SA(B) = B A− q AB. Projections of composed currents can be defined using q-commutators with zero modes
of the currents Fi (t), i = 1, . . . , N − 1. We will call operators SFi [0] the screening operators.

Proposition 5.4. We have

P
(
Fi, j (t)

)
= SFi [0]

(
P(Fi+1, j (t))

)
, i < j − 1. (5.20)
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Proof. Calculating the residues in the right hand side of formula (5.19) for s = i + 1 and using the fact that
Fi,i+1(t) = Fi (t), we obtain

Fi, j (t) = Fi+1, j (t)Fi [0] − q Fi [0]Fi+1, j (t)+ (q − q−1)
∑
k≤0

Fi [k] Fi+1, j (t) t−k . (5.21)

Now we apply the projection P , see (3.10), to both sides of this relation. The modes Fi [k] with k ≤ 0 belong to U−f .
Hence, due to formulae (3.10), the projection P kills the semi-infinite sum in the right hand side of (5.21), and we get

P
(
Fi, j (t)

)
= P

(
Fi+1, j (t)Fi [0] − q Fi [0]Fi+1, j (t)

)
= P

(
SFi [0]

(
Fi+1, j (t)

))
= SFi [0]

(
P
(
Fi+1, j (t)

))
. (5.22)

To get the last equality we use the fact proved in [4,7] that the projection P commutes with the screening operators
SFi [0], P

(
SFi [0](F)

)
= SFi [0] (P(F)) for any F ∈ U ′F . �

Proposition 5.5. We have

P
(
Fi, j (t)

)
= (q − q−1) j−i−1 F+i, j (t), i < j − 1. (5.23)

Proof. The claim follows by induction with respect to j − i from formula P
(
Fi,i+1(u)

)
= F+i,i+1(u), Proposition 5.4

and Lemma 5.6 proved below. �

Lemma 5.6. We have

(q − q−1)F+i, j (t) = SFi [0]

(
F+i+1, j (t)

)
, i < j − 1. (5.24)

Proof. It follows from relation (2.9) that

L+i, j (t) = F+i, j (t)k
+

j (t)+
N∑

m= j+1

F+i,m(t)k
+
m (t)E

+

m, j (t). (5.25)

Since SFi [0]

(
F+i+1, j (t)

)
= F+i+1, j (t)Fi [0] − q Fi [0]F+i+1, j (t), and taking into account the commutativity

[Fi [0], k+j (t)] = 0 and [Fi [0], k+m (t)E
+

m, j (t)] = 0

for i = 1, . . . , j − 2 and m = j + 1, . . . , N , we observe that relation (5.24) results from formula (5.25) and the
equality

(q − q−1)L+i, j (t) = L+i+1, j (t)Fi [0] − q Fi [0]L+i+1, j (t) (5.26)

by induction with respect to j starting from j = N . On the other hand, the second line in (2.4) at w = 0 gives

L+i+1, j (t)L
−

i,i+1[0] + (q − q−1)L+i, j (t)L
−

i+1,i+1[0] = L−i,i+1[0]L
+

i+1, j (t),

which yields formula (5.26), if we keep in mind the relations

L−i,i+1(0) = L−i,i+1[0] = −Fi [0]k−1
i+1, L−i,i (0) = L−i,i [0] = k−1

i ,

k−1
i+1L+i+1, j (t)ki+1 = q L+i+1, j (t),

also following from (2.4), (2.9). �

5.3. Calculation of the projections

The following proposition is a counterpart of Proposition 5.2.
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Proposition 5.7. For any k > l, we have

P
(

Fk,k+1(tk) · · · Fl,l+1(t l)
)

=

k+1∑
m=l+1

P
(

Fk,k+1(tk) · · · Fm,m+1(tm)
)

P
(

Fl,m(tm−1)
) m−1∏

j=l+1

t j

t j − t j−1 . (5.27)

Proof. The claim follows from Lemma 5.8 proved below. �

Lemma 5.8. For any j = l + 1, . . . , k, we have

P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)F j, j+1(t j )Fl, j (t j−1)
)

= P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)F j, j+1(t j )
)

P
(

Fl, j (t j−1)
)

+
t j

t j − t j−1 P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)Fl, j+1(t j )
)
. (5.28)

Proof. We will prove the lemma by induction with respect to l, decreasing l from j − 1 to 1.
We will use the following properties of the projection P coming from the definition (3.10):

P(F−s,s+1(t) · X) = 0, (5.29)

for any s = 1, . . . N − 1, and X ∈ U f , and

P(X1 P(X2)) = P(X1)P(X2), (5.30)

for any X1, X2 ∈ U f .
Consider the case l = j − 1. To calculate the left hand side of formula (5.28) we split the current Fl, j (t j−1) =

F j−1, j (t j−1):

F j−1, j (t j−1) = F+j−1, j (t
j−1)− F−j−1, j (t

j−1).

Since F+j−1, j (t
j−1) = P

(
F j−1, j (t j−1)

)
, the first term here produces the first term in the right hand side of formula

(5.28). For the second term, we move the negative half-current F−j−1, j (t
j−1) to the left using the relation

F j, j+1(t j )F−j−1, j (t
j−1) =

qt j
− q−1t j−1

t j − t j−1 F−j−1, j (t
j−1)F j, j+1(t j )

−
(q − q−1) t j

t j − t j−1 F−j−1, j (t
j )F j, j+1(t j )+

t j

t j − t j−1 F j−1, j+1(t j ), (5.31)

which is a consequence of formulae (5.16), (5.18) and the analyticity properties of the products of currents, and the
fact that the currents Fs,s+1(t s) for s > j commute with F−j−1, j (t

j−1) . Due to relation (5.29), only the third term in
the right hand side of (5.31) contributes nontrivially to the projection, and we obtain the second term in the right hand
side of formula (5.28) for l = j − 1,

P
(

Fk,k+1(tk) · · · Fl+1,l+2(t l+1)
)
· P

(
Fl,l+1(t l)

)
+ P

(
Fk,k+1(tk) · · · Fl+2,l+3(t l+2)Fl,l+2(t l+1)

) t l+1

t l+1 − t l . (5.32)

Assume now that l ≤ j − 2. Formula (5.21) gives that

Fl,s(t) = SFl [0]
(
Fl+1,s(t)

)
− (q − q−1)F−l,l+1(t) Fl+1,s(t). (5.33)

We replace Fl, j (t j−1) and Fl, j+1(t j ) in (5.28) by the right hand side of formula (5.33) for s = j, j + 1, respectively.
Since the currents Fs,s+1(t s) for s > l+1 commute with F−l,l+1(t), the contributions of the second term in (5.33) vanish



S. Khoroshkin et al. / Journal of Geometry and Physics 57 (2007) 1713–1732 1731

due to relation (5.29). For the first term, we use the fact that P
(
SFl [0](F)

)
= SFl [0] (P(F)) for any F ∈ U ′F , see [4,

7], and the commutativity of the currents Fs,s+1(t s) for s > l + 1 with Fl [0] . As a result, we get that formula (5.28)
is equivalent to

SFl [0]

(
P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)F j, j+1(t j )Fl+1, j (t j−1)
))

= SFl [0]

(
P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)F j, j+1(t j )
)

P
(

Fl+1, j (t j−1)
))

+
t j

t j − t j−1 SFl [0]

(
P
(

Fk,k+1(tk)Fk−1,k(tk−1) · · · F j+1, j+2(t j+1)Fl+1, j+1(t j )
))
.

The last equality is obtained by application of the screening operator SFl [0] to formula (5.28) with l replaced by l + 1,
and is true by the induction assumption. �

5.4. Proof of Proposition 5.1

For each l = 1, . . . N − 2 we consider the embedding ψl : Uq(ĝlN−l) ↪→ Uq(ĝlN ), defined by the rule

ψl

(
L [N−l]

i j (t)
)
= L i+l, j+l(t), i, j = 1, . . . , N − l.

Taking into account the matrix structure of the R-matrix (2.1), one can verify that for l < m < k,

ψl

(
B[N−l]
[m−l,k−l](t

m, . . . , tk)
)
= B[m,k](tm, . . . , tk).

In addition, using formula (2.9) one can check that for l < i , ψl

(
F [N−l]

i−l (t)
)
= Fi (t). Besides this, the embedding ψl

is consistent with the projections P [N−l] and P .
We prove Proposition 5.1 by induction with respect to N . We replace the expressions in both sides of formula (5.6)

by the right hand sides of formulae (5.9) and (5.27) with l = 1, respectively, and compare the results term by term.
The terms for m = k + 1 are manifestly the same, taking into account formula (5.23). For m = 2, . . . k, the equality
of the corresponding terms is equivalent to

ψm−1

(
B[N−m+1]
[k−m+1] (t

m, . . . , tk)
)

F+1,m(t
m−1) Lmm(tm−1) · · · L22(t1) v

= ψm−1

(
P [N−m+1](F [N−m+1]

k−m+1 (tk) · · · F [N−m+1]
1 (tm))

)
× F+1,m(t

m−1) Lk+1,k+1(tk) · · · L22(t1) v. (5.34)

It follows from commutation relations (2.4), (2.7), that if v is a singular vector with respect to the action of
Uq(ĝlN ), then the vector

vm−1 = F+1,m(t
m−1) Lmm(tm−1) · · · L22(t1) v

is a singular vector with respect to the action of Uq(ĝlN−m+1) induced by the embedding ψm−1 : Uq(ĝlN−m+1) ↪→

Uq(ĝlN ) , and

F+1,m(t
m−1) Lk+1,k+1(tk) · · · L22(t1) v = Lk+1,k+1(tk) · · · Lm+1,m+1(tm) vm−1.

Hence, formula (5.34) takes the form

ψm−1

(
B[N−m+1]
[k−m+1] (t

m, . . . , tk)
)
vm−1

= ψm−1(P [N−m+1](F [N−m+1]
k−m+1 (tk) · · · F [N−m+1]

1 (tm))Lk−m+2,k−m+2(tk) · · · L22(tm)) vm−1,

which follows from the induction assumption. �
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